개발 공부

기계학습 (Machine learning) 본문

AI

기계학습 (Machine learning)

아이셩짱셩 2018. 8. 3. 15:22

#Machine learning

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.[1]


The name machine learning was coined in 1959 by Arthur Samuel.[2] Evolved from the study of pattern recognition and computational learning theory in artificial intelligence,[3] machine learning explores the study and construction of algorithms that can learn from and make predictions on data[4] – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions,[5]:2 through building a model from sample inputs. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or infeasible; example applications include email filtering, detection of network intruders or malicious insiders working towards a data breach,[6] optical character recognition (OCR),[7] learning to rank, and computer vision.


Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on prediction-making through the use of computers. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Machine learning is sometimes conflated with data mining,[8] where the latter subfield focuses more on exploratory data analysis and is known as unsupervised learning.[5]:vii[9] Machine learning can also be unsupervised[10] and be used to learn and establish baseline behavioral profiles for various entities[11] and then used to find meaningful anomalies.


Within the field of data analytics, machine learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to "produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data.[12]




#Theory

A core objective of a learner is to generalize from its experience.[5][23] Generalization in this context is the ability of a learning machine to perform accurately on new, unseen examples/tasks after having experienced a learning data set. The training examples come from some generally unknown probability distribution (considered representative of the space of occurrences) and the learner has to build a general model about this space that enables it to produce sufficiently accurate predictions in new cases.


The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the performance of algorithms. Instead, probabilistic bounds on the performance are quite common. The bias–variance decomposition is one way to quantify generalization error.


For the best performance in the context of generalization, the complexity of the hypothesis should match the complexity of the function underlying the data. If the hypothesis is less complex than the function, then the model has underfit the data. If the complexity of the model is increased in response, then the training error decreases. But if the hypothesis is too complex, then the model is subject to overfitting and generalization will be poorer.[24]


In addition to performance bounds, computational learning theorists study the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in polynomial time.




#Approaches

Main article: List of machine learning algorithms

Decision tree learning

Main article: Decision tree learning

Decision tree learning uses a decision tree as a predictive model, which maps observations about an item to conclusions about the item's target value.


Association rule learning

Main article: Association rule learning

Association rule learning is a method for discovering interesting relations between variables in large databases.


Artificial neural networks

Main article: Artificial neural network

An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is a learning algorithm that is vaguely inspired by biological neural networks. Computations are structured in terms of an interconnected group of artificial neurons, processing information using a connectionist approach to computation. Modern neural networks are non-linear statistical data modeling tools. They are usually used to model complex relationships between inputs and outputs, to find patterns in data, or to capture the statistical structure in an unknown joint probability distribution between observed variables.


Deep learning

Main article: Deep learning

Falling hardware prices and the development of GPUs for personal use in the last few years have contributed to the development of the concept of deep learning which consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision and speech recognition.[25]


Inductive logic programming

Main article: Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive programming is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as functional programs.


Support vector machines

Main article: Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.


Clustering

Main article: Cluster analysis

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that observations within the same cluster are similar according to some predesignated criterion or criteria, while observations drawn from different clusters are dissimilar. Different clustering techniques make different assumptions on the structure of the data, often defined by some similarity metric and evaluated for example by internal compactness (similarity between members of the same cluster) and separation between different clusters. Other methods are based on estimated density and graph connectivity. Clustering is a method of unsupervised learning, and a common technique for statistical data analysis.


Bayesian networks

Main article: Bayesian network

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional independencies via a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms exist that perform inference and learning.


Reinforcement learning

Main article: Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in those states. Reinforcement learning differs from the supervised learning problem in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.


Representation learning

Main article: Representation learning

Several learning algorithms, mostly unsupervised learning algorithms, aim at discovering better representations of the inputs provided during training. Classical examples include principal components analysis and cluster analysis. Representation learning algorithms often attempt to preserve the information in their input but transform it in a way that makes it useful, often as a pre-processing step before performing classification or predictions, allowing reconstruction of the inputs coming from the unknown data generating distribution, while not being necessarily faithful for configurations that are implausible under that distribution.


Manifold learning algorithms attempt to do so under the constraint that the learned representation is low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned representation is sparse (has many zeros). Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into (high-dimensional) vectors.[26] Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain the observed data.[27]


Similarity and metric learning

Main article: Similarity learning

In this problem, the learning machine is given pairs of examples that are considered similar and pairs of less similar objects. It then needs to learn a similarity function (or a distance metric function) that can predict if new objects are similar. It is sometimes used in Recommendation systems.


Sparse dictionary learning

Main article: Sparse dictionary learning

In this method, a datum is represented as a linear combination of basis functions, and the coefficients are assumed to be sparse. Let x be a d-dimensional datum, D be a d by n matrix, where each column of D represents a basis function. r is the coefficient to represent x using D. Mathematically, sparse dictionary learning means solving {\displaystyle x\approx Dr} {\displaystyle x\approx Dr} where r is sparse. Generally speaking, n is assumed to be larger than d to allow the freedom for a sparse representation.


Learning a dictionary along with sparse representations is strongly NP-hard and also difficult to solve approximately.[28] A popular heuristic method for sparse dictionary learning is K-SVD.


Sparse dictionary learning has been applied in several contexts. In classification, the problem is to determine which classes a previously unseen datum belongs to. Suppose a dictionary for each class has already been built. Then a new datum is associated with the class such that it's best sparsely represented by the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.[29]


Genetic algorithms

Main article: Genetic algorithm

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and uses methods such as mutation and crossover to generate new genotype in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms found some uses in the 1980s and 1990s.[30][31] Conversely, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.[32]


Rule-based machine learning

Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves "rules" to store, manipulate or apply, knowledge. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.[33] Rule-based machine learning approaches include learning classifier systems, association rule learning, and artificial immune systems.


Learning classifier systems

Main article: Learning classifier system

Learning classifier systems (LCS) are a family of rule-based machine learning algorithms that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). They seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions.[34]


Feature selection approach

Main article: Feature selection

Feature selection is the process of selecting an optimal subset of relevant features for use in model construction. It is assumed the data contains some features that are either redundant or irrelevant, and can thus be removed to reduce calculation cost without incurring much loss of information. Common optimality criteria include accuracy, similarity and information measures.

Comments